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LETTER TO THE EDITOR 

Anomaly and singular continuous spectrum in a 
one-dimensional incommensurate system 

Yong-Jihn Kim, M Y Choi, and M H Lee 
Department of Physics, Seoul National University, Seoul 151-742, Korea 

Received 30 March 1989 

Abstract. We study a tight-binding model given by 'Pn+l + V cos(2aQn + f3)'Pn = 
E"", where Q is a Liouville number. It is demonstrated that all eigenstates are critical 
with singular continuous spectra for all values of V. These critical states appear to be 
composed of 'connected extended states'. We also find a band-centre anomaly: the 
resistance of the band centre displays coupled oscillations and is much larger than that of 
other states. 

One-dimensional Schrodinger equations with two incommensurate periods have attrac- 
ted much attention from physicists and mathematicians (Azbel 1964, Aubry and Andre 
1980, Simon 1982, Sokoloff 1986). A typical model is given by the almost-Mathieu 
equation 

+*,,-, + v ~ 0 ~ ( 2 4 n  + e)*,, = E*,, ( 1 )  

where Q is an irrational number. Aubry and Andre (1980) studied this equation and 
showed that for 0 < V < 2, the spectrum is absolutely continuous and all eigenstates 
are extended while for V > 2 ,  the spectrum is point-like and all states are localised. 
At the dual point V = 2, the spectrum is singular continuous and the states are critical. 
In the meantime, Avron and Simon (1982, hereafter referred to as AS) proved that 
when Q is a Liouville number satisfying the condition 

l Q - P k / q k l  k-qk (2) 

with P k / q k  the kth convergent to Q, the energy spectrum is singular continuous instead 
of point-like for V >  2. (See also Thouless and Niu (1983).) This property was then 
conjectured to be true for all values of V.  They also showed that the eigenstates are 
critical but do not decay to zero at large distances, in contrast to usual critical 
wavefunctions found in quasiperiodic systems (Kohmoto et a2 1983). 

Singular continuous spectra can also be found in quasiperiodic systems like 
Fibonacci chains and hierarchical systems (Ceccato et a1 1989, Schneider et a2 1989). 
These systems are known to possess only singular continuous spectra and critical 
eigenstates, which can be either self-similar and algebraic or chaotic. Meanwhile, the 
precise nature of the proposed critical states in equation (1) for the Liouville number 
Q is not known yet. Liouville numbers constitute a set of measure zero, and there 
exist many irrational numbers arbitrarily close to them. This implies that eigenstates 
of the system display highly singular behaviour as Q is varied. 
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This letter investigates numerically equation (1) for two types of Liouville numbers 
(Baker 1975): ( 1 )  a general Liouville number given by Qn =I;:=ln-"! and (2) 
satisfying equation (2). In the case of 0, we confirm that for all V the energy spectrum 
is singular continuous and all states are critical as conjectured by AS. This critical 
wavefunction seems to be of a third type in that it is self-similar but not an algebraic 
function of the distance. It looks rather like extended wavefunctions connected to 
each other. This type of wavefunction was also reported in a one-dimensional 
quasiperiodic system (Kim et a1 1989a). For a general Liouville number Qn which 
does not satisfy equation (2), we obtain the same results: the energy spectrum is singular 
continuous, and all states are critical regardless of V. In addition, we find that the 
resistance of the band centre displays oscillations coupled with other large oscillations, 
and is almost 100 times larger than those of other states (including states near the 
band edge) at large distances. This anomaly can also be seen in the case of 6, but it 
is not on such a large scale. This is in contrast to the band-centre anomaly in disordered 
systems where both the density of states and the localisation length diverge (Gorkov 
and Dorokov 1976, Kappus and Wegner 1981). 

A Liouville number is a transcendental number which can be well approximated 
by rationals (Baker 1975). It is in general defined by the inequality I ~ - p k / q k l <  1/(qkIk 
with P k  and qk -+CO as k -+ 00. We can easily see that Q, satisfies this inequality and 
therefore is a Liouville number. The Liouville numbers considered by AS satisfy the 
inequality in equation (2) and constitute a subclass of general Liouville numbers. Such 
numbers 0 can be obtained through the use of the continued fraction expansion 
0 = [ao,  a , ,  a2,. . . ] (Hua 1982). It we choose, for example, ak+l= kqk, kqk-' , kqk-' + 1, 
etc, in the expansion of 0, where qk is the denominator of the kth convergent of 0, 
then it is straightforward to show that equation (2) is satisfied. Thus we obtain 
dl=[0,1,2,27,482 ,... I ,  d2=[0,1,1,3,4096,528673 ,... I ,  d3=[l ,2 ,3 ,730,4720+1 ,... ] 
which correspond to the choices ak+l= kqk, kqk-' , and kqk-' + 1, respectively. It is thus 
obvious that these numbers are extremely close to rationals. For example, d3 and the 
rational [ 1,2,3,730] = 7303/5112 differ from each other only by and are essen- 
tially equal within finite precision. 

To study nature of the energy spectrum, we use two different methods. One method 
is to investigate scaling of Bk, the sum of allowed energy spectra. We find that Bk - 4;' 
like a quasiperiodic system (Kohmoto et a1 1983). Table 1 shows values of S for some 
values of V and for both types of Liouville numbers, Q2 and 0,. The values of S for 
dl are similar to those in usual incommensurate systems obtained by Kohmoto (1983). 
But this scaling can be continued only up to two or three stages. The other method 
uses the resistance incident on the sample with a certain energy. The dimensionless 
resistance R is given by the Landauer formula (Landauer 1970) R = Ir12/)t12, where r 
and t denote the reflection and transmission amplitudes, respectively. Figure 1( a) 
shows the logarithm of geometrical average resistances m= ( l /N) X r l  In Ri,  where 
Ri is the resistance of the system with i lattices, at two incident energies E , =  
-1.678 204 063 944 9003 and E2 = El  + when Q = o3 and V = 2.01. It is remark- 
able that the behaviour of the resistance at the two energies is strikingly different in 
spite of the very small difference in energy, SE - E, and E2 correspond to an 
eigenstate and a gap, respectively. Note that the escaping point Ne, is exactly given 
by 5112. It is similar to the escaping problem of the transfer matrix (Kohmoto er a1 
1983), where the trace grows rapidly for forbidden states but remains bounded at 
eigenenergies. The eigenenergies of the system with the lattice size N less than 5112 
are almost escaping points, and an extremely small portion is not escaping. Even when 
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Table 1. The indices S for various values of V when Q is equal to Q2 or 0,. 

V =  1.95 v = 2 . 0 0  V = 2.05 

Q = ? z  0.933 65 1.225 90 1.368 00 
Q = Q i  0.764 83 0.974 59 1.286 49 

40 
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Figure 1.- (a )  N dependence of the logarithm of the geometrical average resistance 
for Q = Q, = 7303/5112 and V =  2.01, for an eigenenergy E ,  = -1.678 204 063 944 9003 and 
a forbidden energy E,  = E ,  + lo-”. The arrow denotes the escaping point, Ne, = 51 12. ( 6 )  
In R for Q = Q’= 7303/5113 and V =  1.9, for E ,  = 2.519 and E,  = E ,  + The arrow 
denotes the escaping point Ne, = 595. 

_. 

u s 2 ,  the same behaviour is found with SE = for V =  2.0 and 1.90, 
respectively. 

For comparison, we show in figure l (b)  the logarithm of average resistances at two 
energies E ,  = 2.5219 A and E2 = El + loT4 when Q = Q’= 7303/5113 = d, + In 
this case the escaping point is not 5113 but 595, as can be seen from the continued 
fraction expansions of Q’ and d3; i.e. 7303/5113 = [ l ,  2 ,2 ,1 ,80 ,2 ,4]  and 7303/5112 = 
[ l ,  2,3,730] respectively. Note that the numbers 2 and 4 appearing after 80 in the 
expansion of 0’ change the spectrum only slightly. Thus almost all eigenenergies of 
the system with N = 5 9 5  survive even when N becomes 5113. If we combine blocks 
of 5113 sites (or, almost equivalently, blocks of 595 sites) in this case ( Q  = Q’), we 

and 
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would obtain finite or absolutely continuous spectra in contrast to the previous case 
( Q  = &), where infinitesimal or singular continuous spectra would be obtained. This 
shows the striking difference between singular continuous and absolute continuous 
spectra, and suggests that the energy spectra for Q equal to a Liouville number are 
singular continuous regardless of V .  

Figure 2 shows behaviour of the wavefunctions when Q = 6, and (a)  V = 1.90, 

-1.678 204 063 994 9003. Periodic boundary conditions have been imposed and 
wavefunctions have been normalised. It appears in figure 2(a) that the states are 
composed of many extended states connected to each other. Note that there exists a 
singularity at every lattice site 5112n, where n is an integer. The insets show the 
detailed behaviour up to first 7 and 51 12 sites. (0, can be successively approximated 
by 10/7 and 7303/5112.) Self-similarity is obvious. Figures 2( b) and 2( c) also display 
features in general similar to those of figure 2(a) except for bulging of the central 
region of blocks. We believe that these are critical wavefunctions of the type suggested 
by AS. They are self-similar and almost extended-like, not decaying to zero at large 
distances. 

E = -2.521 987; ( b )  V = 2.0, E = -2.579 085 843 24; ( C )  V = 2.01, E = 

0.03 4 I 

0 2 4 6 0 10 
NI5112 

0.015 - 

0 -  

0 2 4 6 8 10 
NI5112 

Figure 2. Behaviour of the wavefunction when Q = d,, and ( a )  V = 1.90, E = -2.521 978; 
( b )  V=2.0, E=-2.5790858434; ( c )  Ve2.01, E=-1.6782040639449003. Theinsets in 
( a )  exhibit the wavefunctions of one block (of 5112 sites and of 7 sites). Self-similarity 
can be observed. 
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Figure 3 shows N-dependence of the average resistance l? for the states ( a )  at the 
band centre and ( b ,  c) near the edge when Q = Q2. In small scales, as can be seen in 
the inset of figure 3 ( a ) ,  it converges rapidly to a constant value like that of extended 
states. In large scales, however, it converges to another value, which is almost 100 
times larger. We expect that this behaviour appears self-similarly as in the case of 
critical states in a quasiperiodic system of which the average resistance has been 
reported to show self-similar oscillations (Schneider er al 1987, Sutherland and Koh- 
mot0 1987, Kim et al 1989a, b). Note, however, that the second oscillation length is 
very large compared with that of critical states in a quasiperiodic system. This anomaly 
exists only in those states very near the band centre, and disappears when V < 1.26 or 
V > 2.7. In contrast, the curves in figures 3( b )  and 3( c ) ,  which correspond to V = 1.62 
and 1.90, respectively, apparently converge to a single constant value. The convergence 
is not uniform but composed of coupled oscillations, implying critical states (Kim et 
al 1989a, b). It is remarkable that when the sample length is large, as can be seen 
from figure 3, the resistance of the band centre is almost 100 times larger than that of 
the states near the band edge. This is presumably due to the large difference between 
denominators of successive rational approximants of a Liouville number Q2. 

1 

0 1 2 3 4 5 40'  
N 

P 22 
(bl 

2100 I 
0 1 2 3 

N 

Figure 3. N dependence of the average resistance I? when Q = Q2: ( a )  at the band centre 
for V =  1.62, E = O ;  ( b )  at the band edge for V =  1.62, E = -1.02; (c )  at the band edge for 
V = 1.90, E = -2.745. 
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To find the origin of this anomaly, we consider the equation describing the inverse 
localisation length a (Lambert and Thorpe 1982, Stone et a1 1983) 

a = Q 1 +  Q2(cp) 

N 

a l =  C In( l+pi)  
i = l  

where 

pi = & f / ( 4 -  E 2 )  

t .  I = bfa2 I 1-1 a i  = [Ri/(  1 + Ri)]1/2 bi = Epi/(l+ 
and ei denotes the site energy V cos(27rQn + e). The recursion relation of the phase 
Q is given by 

ai exP[i(Qi+l- a i + ~ ) I  = [bi+ ai-i exP(iQi)I/[l + bioi-1 exP(iQi)l 

si = p i  +pi-l - vi + Vi-1 

(4) 

where 

pi =tan-' [ 4 ( 4 -  E2)'I2] 

and vi = 7r/2-2ik+ 7r/2(1- E ~ / I ~ I )  with k given by the relation E = 2 cos k. We can 
see from (3a)  that al  at the band centre is smaller than that near the band edge and 
they converge rapidly to constant values. Thus the anomaly is due to a2 ,  where the 
phase Q plays an important role. Equation (3b) shows that the Q in the range 
7r/2 < Q < 3 ~ / 2  give negative contribution to a 2 ,  while the Q near 0 or 27r give a large 
positive contribution to a 2 .  Indeed, in strongly disordered systems (Stone et a1 1983), 
all the Q populate near 0, leading to strong localisation. Figure 4 shows P ( Q ) ,  the 
probability distribution of Q for N = lo5, V =  1.62 and E = 0.0. Note that there are 
many cp near 0 and 27r as in the case of strongly disordered systems. Such a distribution 
of phase correlations leads to the anomaly. Without the peaks near 0 and 27r, the 
anomaly would not exist. 

0 n 
v 

2rr 

Figure 4. Probability distribution P(q) for N = IO5, V =  1.62 and E = 0.0. The peaks near 
0 = 0 and 2 7 ~  are peculiar to this system. 
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In conclusion, we studied the almost-Mathieu equation for two types of the Liouville 
numbers. It is demonstrated that the energy spectrum is singular continuous and all 
states are critical regardless of V. We also found an unusual band-centre anomaly, 
the resistance of the states at the band centre displaying oscillations coupled with other 
large oscillations. 

This work was supported in part by the Ministry of Education of Korea through the 
Research Institute for Basic Science, Seoul National University. 
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